001475的历史净值(基金的历史净值怎么查?)
基金的历史净值怎么查?
要查找基金的历史净值,可以通过以下几种途径进行查询。
首先,可以登录基金公司的官方网站,在基金产品页面找到相应的基金,然后查看历史净值。
其次,可以登录证券交易所的官方网站,选择基金板块,输入基金代码或名称进行查询。
第三,可以使用第三方金融数据平台或手机应用,如东方财富、同花顺等,输入基金代码或名称进行查询。
最后,也可以咨询基金销售机构或咨询专业的金融顾问,他们可以提供基金的历史净值信息。
干货|逆势获利30万!2016基金销售案例复盘!
伴随着今年1月A股市场25%的跌幅“首秀”,一季度资本市场可以说震荡不休。与之相对应的是,绝大多数银行在一季度“开门红”业绩冲刺过程中,相当多网点的基金销售举步维艰。
但是,笔者所在分行的一家网点,却在如此震荡的市场环境下,实现了600万的股票型基金销售,不仅为本行赢得了12万的中收,更重要的是在2个月不到的时间,为客户实现了近30万的盈利,所有的资金几乎全部获利赎回,真正为客户进行了资产的保值、增值。
为什么在同样的市场行情下,不同的网点间却能产生如此截然不同的销售结果?在如此糟糕的市场行情下,该网点又是怎样做到这一切的?笔者作为分行零售部基金销售主管,近距离走访该网点,通过与网点负责人、理财经理沟通,经过一段时期调查了解后,将相关情况进行了整理、总结,并选取部分精彩案例,以飨读者。
要走出基金销售的误区,就要打破基金销售的传统观念,理念的创新尤为重要。在特定的市场环境下,可对部分短期波动较大的基金产品通过交易来提高投资效率,低吸高抛,降低持基的份额,回避投资的风险。那么如何才能有针对性地对特定的客户所持有的部分产品进行操作?
1.设立止损、止盈线。
在基金销售的前端,便根据客户的风险偏好,以及对收益的预期、亏损的承受确定该客户基金销售的止损线、止盈线。这一点对于基金销售的后续维护显得尤为重要,事实上,很多客户基金的亏损都是因为没有及时止盈,而导致基金投资收益大幅缩水,甚至亏损加大。因此在销售的前端便要设立止损止盈,从源头上便防范并控制基金销售的风险,就能减少因基金亏损而导致的客户投诉。
2.长、短期产品要均衡配置。
理财经理要根据客户的年龄、风险属性、风险偏好合理地配置长期与短期产品。具体来说就是,对于风险承受能力强的客户,短期产品可配置波动较大的股票型、混合型基金产品,如汇添富移动互联(代码000696)、嘉实优质(代码070099)、汇添富美丽30(代码000173)等基金。配置比例可放到50%-80%,长期产品可配置黄金、油气板块的320013诺安黄金、163208诺安油气。该比例配置可到50%-20%,对风险的分散、控制始终是产品配置的重点。对于长期与短期的产品可以分别进行不同的操作策略。
3.对波动较大的短期基金适当低吸高抛、波段操作。
理财经理应根据每日的市场行情对客户的基金进行跟踪,适时为客户提出下一步的基金操作策略。笔者选取了几个精彩的基金实战短期操作策略,在特定的市场环境下,为大家展现了基金也可以进行低吸高抛、波段操作。
案例1
今年1月28日,该行为某位资产在千万级别的客户配置了20万的嘉实优质(代码070099),当天该基金净值1.195,份额165379.46份;配置了20万汇添富美丽30(基金产品代码000173),当天基金净值1.1685,份额117286.92份。至2月4日,嘉实优质净值已由1.195涨到1.307;汇添富美丽30已由1.1685涨到1.829。理财经理为客户将所有份额全部赎回,扣除手续费分别盈利17538.49元、13445.19元。这两笔投资总金额为40万元,在10天不到的时间里共盈利30983.68元,其年化收益率高达近100%。
案例2
今2月4日该行再次为该客户配置了20万汇添富移动互联(产品代码000697)。当天基金净值1.526,份额129507.51份。另配置了10万易方达军工(产品代码001475)。当天基金净值0.84,份额117288.29份。至2月17日,汇添富移动互联基金净值已由1.526涨至1.629,易方达军工基金净值已由0.84涨至0.89。理财经理为客户将30万基金全部赎回,扣除手续费分别盈利9912.84、3809.33元。这两笔投资总金额为30万元,在14天的投资期限中共盈利13722.17元,其年化收益率高达55%。
案例3
今3月2日该行又为这名客户配置了160万添富汇移动互联基金(产品代码000697),当天基金净值1.489,份额1063907.6份;配置了30万易方达军工(产品代码001475),当天基金净值0.82,份额360446.95份。至3月21日,汇添富移动互联基金净值已由1.480涨至1.638,易方达军工已由0.82涨至0.876,理财经理为客户将上述基金全部赎回,扣除手续费分别盈利15841.58元、15751.15。这两笔投资总金额为190万元,在20天的投资期限中共盈利31592.73,其年化收益率达到18.9%。
基金定投能够平摊基金销售的成本,降低风险,是普通投资者的投资利器,这些都是大家耳熟能详的有关基金定投的定义。而其实理财经理更多关心的是如何选定基金定投组合,锁定利润。
1.适时提醒客户赎回。
2.购置基金定投组合。
当理财经理看不清未来究竟哪一个板块会上涨时,最好的方法就是配置适合的基金定投产品组合。如以易方达50(产品代码110003)+南方500(产品代码160119)+汇添富美丽30(产品代码000173)这个定投组合为例(这三只基金形成了三足鼎立又互相增益的独特气势)。
从基金的分类来看,组合兼具指数型与偏股型,易方达50指数增强基金作为核心资产配置,搭配中长期业绩突出的偏股型基金作为卫星基金增强收益;从投资标的上看,组合中的基金有以大盘蓝筹股为投资标的,也有以中小板创业板为标的,也有全市场选股的,这可以把握不同市场风格的投资机会;从基金历史业绩上看,组合中的基金运作稳健、精选个股,兼顾价值与成长。
所谓基金健诊活动,就是理财经理对前期存量基金持有客户,尤其是对于前期已经亏损的客户或对持有的基金收益不满意的客户,理财经理应根据客户的年龄、风险承受以及在本行的资产结构等,实时给出下一步基金操作的建议。
基金的亏损问题一直是困扰基层网点基金销售的难点,也是很多理财经理不愿销售基金的原因。那么网点到底该如何化解这一难题呢?
1.大胆使用基金转换。
通过基金健诊活动,理财经理对不同的客户,应根据其不同的风险属性及偏好,在特定的市场行情中,实行不同的操作策略。对其中风险承受能力较强并对基金收益不满的客户应大胆使用基金转换的方法,扭亏为盈或增加收益。
案例4
2015年4月,该网点共计销售350万打新基金产品——南方利淘(产品代码001183)。三个月的封闭期之后,不少客户对其业绩表现很不满意。今年理财经理判断:未来一段时间,股市将处于震荡阶段,若逢跌买入,盈利会是大概率事件,可以将稳健的、打新的南方利淘在股市企稳、反弹的时候转入偏股型基金里面,可以建议大部分客户将南方利淘转换为南方大数据100(代码001113),二者之间的转换是没有手续费的。
具体操作策略如下:对曾经买过基金,风险偏好较高的客户将其原南方利淘基金的40%-60%转换至南方大数据;风险偏好较低或者从来没买过基金的客户则转换20%-30%。在多次邀约客户、充分提示风险以及合理控制转换金额比例后,在今年3月1日开始,理财经理对客户的原南方利淘基金进行转换,客户转入南方大数据时该基金净值为0.71-0.72,在3月11日总金额近250万的南方利淘客户按比例转换为南方大数据100,达到了网点总销售金额的70%,在3月20日至3月30日,当南方大数据100基金净值为0.79-0.82时,理财经理及时通知已转换客户将基金全部赎回,至此该网点原购买南方利淘基金的大部分客户通过基金转换的方法已经全部获利出场,盈利达到8%-12%。
2.基金定投与基金申购结合使用。
具体地说就是对部分进行单笔基金申购已亏损的客户,在特定的市场行情下,用月定投的方法再投资同一款基金产品,以摊平该只基金购买成本,适时操作,以减亏或盈利出*。
案例5
该网点在1月19日为客户配置了10万汇添富美丽30(产品代码000173),当天基金净值1.93,份额为51047.7份。基金购买完之后一直亏损,1月25日该网点为客户进行同一产品的基金定投配置,以降低基金申购成本。定投日期为每月26日,金额为每月35000元。连续三个月扣款时该基金的净值分别为1.749、1.753、1.897。
至3月30日该基金净值为1.923,理财经理为客户将定投基金全部赎回,获利5695元。将原单笔申购的基金份额51047.7份,全部赎回,亏损1835.27元,将定投基金与单笔申购基金的盈亏统一计算,获利3859元。历经2个多月用定投与申购结合的方法,理财经理成功实现了扭亏为盈。
总而言之,方法总比困难多。该网点在基金销售中的创新,说明了只要在实际工作中勤于思考,乐于创新,通过基金等产品的合理配置,不仅可以为银行创造可观的中收,还可以为客户的资产保值、增值。同时,通过产品前后端的完整销售,也体现了在互联网金融高速发达的今天,实体网点的价值——差异化金融综合服务,是无法被取代的。
本文刊登于《零售银行》2016年6月刊
代码001475基金7月16来自日收盘价价是多少?001475
代码001475基金7月16日净值是1.1240。
基金净值的计算?
尽量避免风险,保住本金
00来自1475基金什么时间出净值
这人的回答不负责呐。易方达国防军工混合基金是新发基金(6月19日才成立),有不超过3个月的封闭期,在此期间,每周五收市后公布一次净值,而不是每天公布净值。
【国联金融工程】NLP增强的主动权益基金标签体系
NLP增强的主动权益基金标签体系
报告外发时间:2022-08-22
投资要点
ØNLP抽取合同文本信息,全面增强基金分类
基金分类是FOF管理流程的起点,传统的分类方法大都过度依赖文本或持仓信息。本文则以NLP技术深挖基金合同的文本信息,对未建仓的主动权益基金实施有监督的文本分类算法;对已建仓的基金则在聚合文本、持仓、净值等信息的基础上采用无监督的层次化聚类方法,全面增强基金分类的效果。
Ø 对未建仓基金进行有监督的文本分类
合同文本是未建仓基金唯一可用的信息,且人们常以既有的标签体系对新基金归类。本文即根据业界习惯预定义一个含15个类别的标签体系,按基金名称标注部分样本作为训练集,然后采用百度飞桨自然语言处理模型库PaddleNLP中开源的文本分类方案,基于中文NLP领域领先的百度ERNIE模型对主动权益基金实施有监督的文本分类。模型在测试集上的准确率达89.83%,对行业、主题类基金的预测准确率多在80%以上。
Ø 对已建仓基金聚合文本、持仓等信息实施无监督聚类
在以TF-IDF算法将量化抽取文本主题的基础上,本文从持仓组合、净值走势、交易偏好、截面特征、合同文本维度对已建仓基金画像,并实施基于预定义距离矩阵的层次化聚类。针对平替产品投资的需求,我们使用距离阈值横切出组内相似度高的社区结构;针对FOF组合投资的需求,我们先以CH指标遴选构建组间异质性强的文本聚类结构,然后结合持仓等信息优化迭代出细化、稳健的聚类体系。
Ø 结合文本、持仓信息识别基金“风格漂移”
基金分类的事前法、事后法均无法识别风格漂移现象。本文在结合文本、持仓信息聚类的基础上,提出了两种量化识别基金“风格漂移”的方法。第一种是通过度量与基准产品的文本、持仓向量距离差来定义风格漂移的产品;第二种则是在文本聚类的基础上根据组内样本的行业分布差异进行定义。
Ø 风险提示:
基金的业绩分析基于历史数据,计量模型则带有一定的假设,据此预测未来收益存在失准、失效的可能。
分析师:朱人木
执业证书编号:S0590522040002
邮箱:zhurm@glsc.com.cn
联系人:孙子文
邮箱:sunzw@glsc.com.cn
正文目录
正文
1.机器学习增强基金分类
1.1. 传统分类方法不够精细
Ø 基金分类是FOF管理体系的基石
FOF管理流程包括基金分类、基金评价与筛选、组合配置和投后管理等步骤。基金分类是整个管理流程的起点,良好的基金分类可在多个环节提升基金投研的效率:第一,组内相似度高,提高基金评价的可比性、便于平替产品投资;第二,市场风格覆盖广,便于筛选应时的绩优产品;第三,颗粒度细,满足多样化、小众化的投资需求;第四,组间区分度高,便于构建轮动、分散化的投资组合。
Ø 传统分类方法片面、不精细
传统的基金分类方法主要分为事前法和事后法。事前法是指依照基金合同、尽调报告等文本信息确定基金投资风格和策略类型,常见的WIND分类体系即属于此类。事前法可以得到先验、客观的分类结果,也能够灵活地识别持仓特征不明显的投资策略。然而该方法不能应对基金的风格漂移现象,且在采用一般的文本分析技术时也难以做到深入、精细的分类。
事后法则是指根据基金的持仓、净值信息来确定基金类型,流行的晨星风格箱即为如此。这一量化方法可较为准确的刻画基金类型,但其因数据披露时限而存在滞后性问题。一些持仓特征不明显的策略类型如量化主题、多策略主题也难以通过事后法识别出来。
1.2. 创新使用NLP文本分类+层次化聚类
全面引入NLP技术深挖合同文本,增强基金分类效果。基金合同较为详尽的阐释了该基金的投资风格和策略类型,传统的文本分析方法不能充分挖掘相关信息。近年来中文NLP领域取得了诸多突破性的进展。针对小样本、长文本的主动权益基金归类任务,本文即分别采用百度ERNIE3.0模型和TF-IDF算法从基金合同中提取信息,以增强分类效果。
Ø 对新基金采用百度ERNIE模型有监督分类
采用百度ERNIE3.0模型对未建仓的主动权益基金执行有监督的文本分类。对于未建仓的新基金,事前法是分类任务唯一的选择,深挖合同文本会带来显著的增益。在主动权益基金的合同文本中,投资目标、投资基准、投资理念和投资策略部分均含有丰富的风格/策略信息,与基金类型识别直接相关。
在具体实践中,人们常会根据既定的标签体系或目标策略来对新基金进行归类,因此这是一个典型的有监督分类任务。本文针对主动权益基金搜集了业界常用的15个类别标签,并根据基金名称对部分基金打标签形成训练样本集。在模型选择上,本文选择在中文NLP领域实测表现十分优秀的百度ERNIE3.0模型进行训练和预测。
Ø 对已建仓基金结合文本、持仓数据无监督聚类
对于已建仓的基金,由于文本信息和持仓数据难以整合,业界通常采用事后法以持仓数据来确定基金类型,本文则尝试引入NLP算法将二者聚合分析。TF-IDF就是一种可以较好凸显文本主题的NLP算法,其在小样本、长文本数据集中有着便捷、高效的应用优势。本文即采用TF-IDF算法将基金合同向量化表示,然后再结合持仓信息构建聚类标签体系。
根据文本向量和持仓特征、净值等信息构建灵活、稳健的聚类标签体系。投资风格相似的基金经理往往有一致的持仓偏好,其基金的净值走势也会趋同。本文按基金的合同文本、持仓组合/风格、净值信息等指标分别计算主动权益基金的余弦、马氏距离矩阵,然后分别基于距离阈值和CH指标构建不同层次的标签体系。
Ø 两种分类方法均取得较好的应用效果
在具体实践中,ERNIE模型和层次化聚类方法均取得了较好的分类效果。ERNIE模型在整个测试集中的准确率达89.83%,且对2/3类别的预测准确率超70%。根据距离阈值横切社区结构的方法则灵活、准确地识别出多种宽基风格、细分主题的相似产品;另外,拿CH指标遴选文本聚类结构、并以持仓信息迭代优化的方法也成功构建出一个多维、稳健的标签体系。
1、搭建网络销售平台
2. 基于基金合同文本的有监督分类
2.1. 百度ERNIE知识增强模型——观千剑而后识器
Ø ERNIE模型有丰富、系统的先验知识
NLP本质上是对人类语言的数学化建模,曾先后历经基于词频统计的向量化表示和考虑上下文的深度学习阶段。2018年BERT等模型在样本集外的超大语料库习得先验知识,开启了全新的预训练时代。但BERT预训练仍只是完形填空和上下句预测,其无法学到词语、实体的完整语义。
ERNIE3.0等于BERT+知识图谱,具有丰富、系统的先验知识。百度ERNIE立足中文情境,以知识图谱增强大规模预训练模型,从字开始学习词语、实体的结构关系,显著提升了模型的精度和泛化能力。从2019年以来,百度飞桨团队先后基于知识融合、持续学习语义、知识图谱推出三个版本的ERNIE模型,并凭借习得的先验知识在文本分类等多个任务情境中均取得了优异的实绩。
2.2按合同文本对基金进行有监督分类
Ø 主动权益基金的文本多分类
本文所指的主动权益基金包括WIND基金分类中的普通股票型、偏股混合型、平衡混合型和灵活配置型基金,后两类基金的近2年平均股票仓位须大于60%。此时样本集共有3551只基金。在文本分析之前,本文还对合同文本的相关字段进行了预处理:首先,提取投资策略中关于权益资产的策略描述段落;其次,保留投资基准中与策略相关的指数名称;最后将基金的投资目标、投资基准、投资理念、投资策略文本拼接起来。在剔除拼接文本长度小于50个字符的样本后,还剩下3503个样本。
我们构建了含15个类别的主动权益基金标签体系,包括常见的成长/价值风格、大消费/医*/新能源行业、量化/ESG主题等。就合同文本的主题策略定义而言,大部分样本在该体系中的标签类别是唯一的,因此这是典型的文本多分类任务。然而,也有一些样本的主题策略涉及多个标签,比如某只基金同时属于科技和量化主题。故我们在训练和预测时会同时察看TOP1、TOP2标签的准确率。
根据基金名称打标签,构建训练、开发样本集。许多主动权益基金的名称中即涵盖了投资的主题范围,如XX消费主题、XX量化成长等。本文即根据基金名称中与标签相关的一些关键词,对部分主动权益基金进行标注。在打标签时,要求基金名称不得含有不同标签下的多个关键词。最后,总共得到1374只标注后的样本,对其按0.7/0.3的比例划分为训练、测试集,剩余未标注的样本则为预测集。
Ø 以ERNIE3.0模型实施有监督分类
本文以从Wind数据库下载的基金合同相关字段构建文本样本集,并选择ernie-3.0-medium-zh作为预训练模型。由于数据集有近一半的样本长度介于500-1000字符之间,故将模型的缺省参数max_seq_length设置为1024。为增强最终结果的鲁棒性,模型在训练时开启了早停机制。
从结果来看,ERNIE3.0模型在基金文本多分类任务上实绩颇佳。模型在整个测试集上的准确率为89.83%,TOP2标签的准确率达96.85%。分类来看,在行业主题领域模型的预测精度最高,其对数量在10个以上的行业主题基金预测准确率均在80%以上;在国企改革、ESG等特征鲜明的主题上模型预测准确率也高于80%;仅在量化、价值、均衡主题上模型的预测准确率低于70%。
1、搭建网络销售平台
3. 层次化聚类的流程简介
3.1. 灵活、普适的层次化聚类
层次化聚类是指根据节点间的相似度(距离)来逐步连接各节点的一种无监督分类方法。层次化聚类有两种连接模式:一方面,层次化聚类根据相似度强弱连接相应节点对,形成亲近疏远的结构化树状图;另一方面,我们也可设置阈值横切树状图,以获得理想的社区结构。在基金分类场景中,这两种做法分别对应于FOF组合投资与平替产品投资的需求。
Ø 以余弦距离、马氏距离共建距离矩阵
以TF-IDF算法将基金合同文本向量化表示。即使在对主动权益基金的合同文本预处理后,大部分样本仍然是含有许多噪音信息的长文本,就抽取出的文本主题进行聚类就成了一个便利化的选择。TF-IDF是一种用于信息检索和数据挖掘的词频统计算法,其通过弱化全语料库的高频词和强化个体文本的高频词来凸显文本关键词,本文即使用TF-IDF算法将样本集中的基金合同文本转化为100维的向量矩阵。
以余弦距离和马氏距离多角度提取数据信息,增益基金聚类的效果。余弦距离又称余弦相似度,是用向量间的余弦值来衡量向量间的相对差异,在机器学习特别是 NLP领域被广泛应用;马氏距离则以协方差距离来度量向量间的绝对差异,其不受数据量纲影响更为稳健。本文按基金合同文本、持仓净值、组合信息分别计算了样本间的余弦距离、马氏距离矩阵,然后根据不同任务灵活地聚合各维度的距离矩阵。
Ø 均值连接模式下按距离阈值、CH指数灵活聚类
在距离矩阵的基础上,按照组间平均距离进行层次化聚类。常用的组间距离计算模式有单连接、全连接和均值连接3类。单连接、全连接分别以两个聚类簇中的最近样本距离、最远样本距离作为组间距离,二者均易受到极端值的影响。均值连接模式选择以两个聚类簇间所有样本距离的均值作为组间距,分组效果更为稳健。本文即选择均值连接模式对样本集进行层次化聚类。
平替产品投资要求组内相似度高,聚类时设置距离阈值可切分出理想的社区结构。当一些热门赛道的基金产品暂停或限制申购时,FOF投研人员常需找出高相似度的同类产品作为替代投资品。这时,合意的聚类结果应为稀疏连接的社区网络,即仅将高度相似的基金连接归并为一类。在层次化聚类模型中可通过设置距离阈值来实现这一目标,阈值越小则聚类的组内相似度越高。
FOF组合投资常强调聚类的组间相关性低,可通过CH指数选择组间异质性最大的聚类组数。低风险FOF组合是FOF市场的主流产品之一,其多从低相关的不同组别优选产品以分散风险。CH(Calinski-Harabaz)指数通过度量组间协方差的异质性来选择最优聚类组数,其值越大则聚类的组间差异越大。
3.2. 从文本、持仓等多维度为基金画像
从基金的合同文本、持仓信息、净值走势和截面特征为主动权益基金画像。业界常用的风格识别方法包括基于持仓的风格分析法PBSA和基于净值的风格分析法RBSA,均较文本识别法更为准确;而在判定基金的主题策略时,基金的截面特征和合同文本又可提供显著的信息增益。本文即从基金的合同文本、持仓风格/组合和交易偏好、截面特征等维度刻画主动权益基金,以得到更为稳健的刻画分类结果。
Ø 文本向量聚类构建社区结构
我们依照前述方法构建出主动权益基金的TF-IDF文本向量矩阵,并根据各主题领域的代表性基金和向量间的余弦相似度切分出5亿以上规模产品的社区结构。如在成长型基金中,与南方优选成长A(202023.OF)相似度较高的基金有富国天惠、融通新蓝筹(161601.OF)等;在多策略主题中,与国泰融安多策略A(003516.OF)相似的产品有易方达科讯(110029.OF)和华商量化进取(001143.OF)等。从结果可见TF-IDF算法较为准确的提炼出了基金合同的主题策略。
Ø 持仓信息识别风格/策略主题
基金的持股平均市值准确反映了基金经理的大小盘投资偏好。取最近一个全持仓季的持股信息,本文计算了样本中各基金的持股加权市值,其准确的反映了基金经理的大/小盘投资风格。从持股市值最大的前10只基金来看,基金经理张坤、曲扬、刘彦春、周谧和杨超等都是典型的大盘风格投资人;而在持股市值最小的10只基金里,基金经理丘栋荣、曹名长、徐治彪、黎海威又均为著名的小盘股猎手。
参照业界通用做法,本文使用个股的营业收入年均增速、净利润年均增速和预期EPS近1年增速合成成长指标,以动态市盈率、动态市净率和动态市现率构建价值指标。为避免出现指标排序不单调的情形,本文以标准化后的成长指标减去价值指标作为度量个股成长/价值风格的GV分数。在持股GV分数最高的10只基金中,基金经理蔡嵩松、李瑞、左金保、姚志鹏等均为成长风格的代表性投资人;而在GV分数最低的10只基金中,黄春逢、蔡目荣、韩文强等人则是价值投资的著名拥趸。
大赛道的仓位上限高、热门赛道基金规模大。按基金在各板块、行业的近2年平均仓位排序,部分较大的赛道中基金仓位最高可达95%以上。比如金融地产领域的国联安红利(257040.OF)仓位为99.4%;医*行业的前海开源中*研究精选A(005505.OF)仓位为99.9%。另外,重仓景气赛道的基金则往往规模较大。军工行业的国投瑞银国家安全(001838.OF)净值为32.2亿元;易方达国防军工(001475.OF)规模达179.3亿元;TMT领域的诺安成长(320007.OF)和银河创新成长(519674.OF)规模则分别为266.4亿元、167亿元。
板块变化大的基金多为行业轮动、量化主题,变化小的多是医*主题。以基金近2年持仓的板块变化率来看,变化最大的前10只基金既有像博时行业轮动(050018.OF)、财通价值动量(720001.OF)、中航新起航(005537.OF)这样的行业轮动型基金,也有长城量化精选(006926.OF)、东吴阿尔法A(000531.OF)等量化基金。而在板块仓位变化最小的10只基金中则有9只均属于医*主题,包括葛兰的中欧医疗健康A(003095.OF)和中欧医疗创新A(006228.OF)两只基金。
3.3. 结合文本、持仓量化刻度风格漂移现象
接下来本文分别将文本向量与持仓板块分布、持仓风格特征的距离矩阵合并,并以各主题领域内无风格漂移现象的典型产品作为中心来刻画社区结构。如果某只基金的文本主题和持仓特征不一致,则其会在文本向量、持仓特征中的某个维度上与社区中心点拉开距离。
在消费主题领域,以易方达消费行业作为社区中心,嘉实新消费和鹏华消费优选是在文本聚类中距中心最近的2只基金。而在由文本向量、持仓板块分布信息共同计算出的距离矩阵中,嘉实新消费与中心点的距离在1300只基金中排第2位,鹏华消费优选排第12位,二者仍都在中心点附近。这表明以中心点为基准,两只消费基金并无明显的风格漂移现象。
就成长风格维度来看,在文本聚类中与南方优选成长同属一类的富国天惠、大摩卓越成长(233007.OF)、融通新蓝筹和华泰柏瑞盛世中国(460001.OF)也仍在新的距离矩阵中与基准相邻;从价值维度来看,虽然国富估值优势(006039.OF)、富国价值优势(002340.OF)与作为基准的中庚价值领航(006551.OF)距离稍远,但二者的VG分数在样本中均处于后30%的水平,故都属于价值风格。
1、搭建网络销售平台
4. 灵活实施层次化聚类
4.1. 基于距离阈值的社区识别
Ø 以距离众数作为阈值横切社区结构
当按照前述多维度的特征计算得到最终的距离矩阵后,本文即开始实施预定义距离矩阵的层次化聚类任务。首先,基于平替产品投资对组内高相似度的需求,本文采用基于距离阈值的社区识别算法。在已经归一化的距离矩阵中,所有样本点的距离均值为0.14,距离众数为0.147。共有60%的样本距离小于众数,这意味着有40%的样本距离相对较大。本文即选择距离众数作为阈值来进行层次化聚类。
在按照众数阈值聚类后,样本集一共被分成521组,各组的平均基金个数为2.5只。从各组的频数统计来看,该方法构建的是稀疏连接的社区网络。一共有261个组仅包含1只基金,这表明许多特性突出的基金均被作为离群点单独分组。223个组的基金频数介于2-5只,意味着仍有多只基金在多维特征空间中存在相似度较高的平替产品。还有5个组的基金频数介于23-51只之间,这显示出在部分热门赛道的“基金抱团”现象。
Ø 社区结构的实况简析
本文接下来结合各组主题进行展示。医*主题组有37只基金,规模最大的为净值148.1亿的工银瑞信前沿医疗A(001717.OF);其他还包括广发医疗保健A(004851.OF)、中欧医疗创新A(006228.OF)等。科技组有29只基金,其中最大为净值44.2亿的银华中小盘精选(180031.OF),其他还有易方达信息产业(001513.OF)、富国互联科技A(006751.OF)等。环保新能源组有9只基金,规模最大的是净值205.4亿的华夏能源革新A(003834.OF),汇添富环保行业(000696.OF)、嘉实新能源新材料A(003984.OF)也均属于此类。
非行业主题的成长风格组有51只基金,其中规模最大的南方新优享A(000527.OF)净值达51.63亿元,工银瑞信核心价值A(481001.OF)、南方稳健成长(202001.OF)也均属此类;量化组有23只基金,西部利得量化成长A(000006.OF)以15.6亿元的规模居首位,其他还有中欧量化驱动(001980.OF)、汇添富成长多因子量化策略(001050.OF)等。产业升级主题有12只基金,规模最大的是净值15.6亿的南方天元新产业(160133.SZ),其他还包括富国产业驱动(005840.OF)、广发新动力(000550.OF)等。
基金的策略主题与基金经理的投资习惯息息相关。本文接下来剔除聚类结果中不足3只基金的组别,然后展示各组中管理规模靠前的基金经理。可以看到,投资风格相近的基金经理大都被聚类在一起。主投军工的何崇凯、章旭峰、李轩和宋海岸即被归为一类;王博、王贵重和邵洁则均属科创主题投资人;萧楠、王园园、徐文卉是大消费领域的基金经理;王阳、吴昊和王迪则都属于汽车主题的投资人。
总的来看,在层次化聚类中根据距离阈值横切树状图是一种灵活、精准的社区识别方法,融入文本信息也显著的增强了算法的深度识别能力。它既可以在热门的行业赛道中优选风格类似的基金产品和管理人,也能够深入挖掘细分主题领域内的同类产品、投资人。
4.2. 基于CH指数的层次化聚类实践
与平替产品投资不同,基金组合投资通常需要分散配置低相关的资产以降低风险。在有监督分类中预定义的标签体系往往不是互相独立的,而无监督的层次化聚类则可以根据量化指标选择组间异质性最强的分组参数。本文即先使用合同文本构建主动权益基金的层次化聚类结构,根据CH(Calinski-Harabasz)指数优选簇个数。再在此基础上根据持仓信息优化迭代出细分、稳健的聚类标签体系。
Ø 根据CH指数将文本数据聚类为26组
在sklearn的层次化聚类函数中输入TF-IDF文本向量的余弦距离矩阵,可以看到当组数等于26时CH指标取得了最大值。本文即设定组数等于26,然后执行对样本集的文本聚类。从聚类分组的频数统计来看,26个组的基金数量介于1-576只,这也体现出不同赛道的宽度差别悬殊。有9个组的频数在10只以下,14个组的频数在11-100只之间,只有3个组的频数大于100只。
从文本信息的聚类结果来看,其较好的识别出了国企改革、定向增发、量化、红利、多策略、环保新能源、互联网、红利风格、医*、大消费和科技主题的基金。其中国企改革主题组有35只基金,医*主题组有33只基金。但即便在这些主题较为统一的组内,也混杂有少数不同类型的基金。本文接下来将根据持仓信息对这一聚类结果继续优化,通过定量筛选、拆分、整合的方法以纯化各个主题分支。
Ø 结合持仓信息优化聚类标签体系
在文本聚类结果的基础上,本文从基金的VG分数、持仓平均市值、年换手率、重仓股特征等维度对样本内各组进行裁剪、纯化,以此进行优化。
经过上述操作,本文即得到了最终的主动权益基金聚类标签体系。该标签体系先通过合同文本灵活识别出热门的行业主题和持仓特征不突出的部分策略类型,然后结合持仓信息在重新聚合的同时剔除风格漂移的产品。该标签体系最终包括23个类型1154只主动权益基金。其中数量最多的均衡风格基金有176只,数量最少的ESG主题产品共有3只。热门的大消费主题产品有84只,科技主题产品有72只,成长风格基金有111只。
Ø 聚类标签体系简况
在主动权益基金的聚类标签体系中,各标签之间并非互斥的关系。如金融地产基金多又属于价值风格;科技、新能源主题基金则多为成长风格;消费主题基金常展现出大市值风格。本文根据市场轮动的节律特征,按行业主题、风格、其他、交易偏好类别的顺序来确定各基金的主标签,并在附录展示了部分类别基金的规模、特征简况。
4.3. 聚类实践总结
在聚类时输入更庞大的特征矩阵常能带来可观的信息增益,但其也会导致样本间的差异更加明显。就基金分类任务而言,合同文本和持仓信息均是非常重要的判断依据。根据不同需求灵活地聚合两类信息是一件富有挑战性的事情。本文分别用有监督文本分类、无监督模式下的阈值横切社区结构和优化聚类体系三种方法对此进行了有限的探索,顺便为识别基金“风格漂移”提出一种新的思路。
1、搭建网络销售平台
5.风险提示
基金的业绩分析基于历史数据,计量模型则带有一定的假设,据此预测未来收益存在失准、失效的可能。
1、搭建网络销售平台
法律声明:
本订阅号的版权归国联证券所有,任何订阅人如欲引用或转载本平台所载内容,务必注明出处为国联证券研究所,且转载应保持完整性,不得对内容进行有悖原意的引用和删改。转载者需严格依据法律法规使用该文章,转载者单方非法违规行为与我司无关,由此给我司造成的损失,我司保留法律追究权利。
股票的历史净值查询
1.股票一般没有净值这种提法;2.你所说的应该是每股净资产;3.每股净资产的历史数据,可以通过查阅上市公司以往的年报找到;4.在你用的操盘软件上,进入基本资料-财务分析,一般都能找到最近几年来的主要财务数据,包括每股净资产。
哪个基金投资军工板块?
投资军工板块基金,富国中证军工 (161024)、鹏华国防(160630)和易方达国防军工 (001475),申万军工指数(163115)
解析军工指数基金中的“宝藏基”如何选?
人生最悲催的事莫过于,你在一个板块努力到感动自己,而这个行业却在集体沦陷。
我们来看看10大军工行业的基金,谁亏得最惨。
(1)富国军工主题混合A:基金代码005609。今年来亏损14.71%。
(2)易方达国防军工混合:基金代码001475。今年来亏损16.76%。
(3)南方军工改革灵活配置混合A:基金代码004224。今年来亏损18.59%。
(4)广发中证军工ETF联接A:基金代码003017。今年来亏损20.96%。
(5)富国中证军工指数:基金代码161024。今年来亏损21.1%
(6)申万菱信中证军工指数:基金代码163115。今年来亏损21.13%
(7)前海开源中证军工指数A:基金代码000596。今年来亏损21.44%。
(8)博时军工主题股票A:基金代码004698。今年来亏损22.03%。
(9)华夏军工安全混合:基金代码002251。今年来亏损24.04%。
(10)鹏华中证空天军工指数(LOF)A:基金代码160643。今年来亏损24.84%。
选基有技,知基根底。
点击关注学点理财知识。
国防时顶微当军工oo175基金净值
易方达国防军工混合(基金代码001475,中高风险,波动幅度较大,适合较积极的投资者)2016年1月12日单位净值为0.8580元。